

OCR (A) Chemistry GCSE PAG 6 - Titration (Chemistry only)

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

R www.pmt.education

D PMTEducation

List the apparatus required to carry out a titration

List the apparatus required to carry out a titration

- Burette
- Conical flask
- Clamp stand
- Pipette
- Small funnel
- White tile/ piece of paper

www.pmt.education

D PMTEducation

What is the purpose of repeating a titration?

What is the purpose of repeating a titration?

To obtain concordant results, allow a mean titre to be calculated, reduce the effect of random error

Why is a trial titre carried out?

Why is a trial titre carried out?

To quickly check that the end-point can be reached with the concentrations and volumes being used. To find the rough volume required to reach end-point.

How do you read the volume using a burette?

How do you read the volume using a burette?

Read at eye level, use the bottom of the meniscus (the curve of the liquid), record volume to the nearest 0.05cm³ if burette has 0.10cm³ graduations.

What is a neutralisation reaction?

What is a neutralisation reaction?

Hydrogen ions reacting with hydroxide ions to form water

How can you measure pH (2 ways)?

How can you measure pH (2 ways)?

Use a pH probe

Use universal indicator and compare to the colour chart

Describe how to set up a titration

Describe how to set up a titration

Use a pipette to add a known volume of alkali to a conical flask. Add a few drops of indicator. Fill the burette with acid.

After the apparatus has been set up, describe how to carry out a titration

After the apparatus has been set up, describe how to carry out a titration

Open the tap of the burette to slowly add the solution to the conical flask, swirling to mix. Close the tap when the end point is reached. Record the volume. Repeat.

How do you know that the end point of a titration has been reached?

How do you know that the end point of a titration has been reached?

First permanent colour change of the solution in the conical flask.

Describe the test for oxygen

Describe the test for oxygen

A test tube of oxygen will relight a glowing splint

Describe the test for hydrogen

Describe the test for hydrogen

A lighted splint placed in a test tube of hydrogen will make a squeaky pop

Describe the test for carbon dioxide

Describe the test for carbon dioxide

Forms a white precipitate with calcium carbonate or turns limewater from colourless to cloudy

Describe the test for chlorine gas

Describe the test for chlorine

Damp blue litmus paper turns red then fades to white

How would you carry out a flame test?

How would you carry out a flame test?

- Clean a wire loop in HCl to remove unwanted ions
- Dip the wire loop into your sample
 Record the colour of the flame

What colour is the flame test for lithium ions?

What colour is the flame test for lithium ions?

What colour is the flame test for sodium ions?

What colour is the flame test for sodium ions?

Yellow

What colour is the flame test for potassium ions?

What colour is the flame test for potassium ions?

What colour is the flame test for calcium ions?

What colour is the flame test for calcium ions?

Orange-red

What colour is the flame test for copper ions?

What colour is the flame test for copper ions?

Blue-green

What colour is the precipitate when sodium hydroxide reacts with iron (II) ions?

What colour is the precipitate when sodium hydroxide reacts with iron (II) ions?

Green

What colour is the precipitate when sodium hydroxide reacts with iron (III) ions?

What colour is the precipitate when sodium hydroxide reacts with iron (III) ions?

Orange brown

What colour is the precipitate when sodium hydroxide reacts with copper (II) ions?

What colour is the precipitate when sodium hydroxide reacts with copper (II) ions?

Blue

What colour is the precipitate when sodium hydroxide reacts with calcium ions?

What colour is the precipitate when sodium hydroxide reacts with calcium ions?

White

What colour is the precipitate when sodium hydroxide reacts with zinc ions?

What colour is the precipitate when sodium hydroxide reacts with zinc ions?

White

How could you distinguish between Zn²⁺ and Ca²⁺ ions?

How could you distinguish between Zn²⁺ and Ca²⁺ ions?

Add excess NaOH.

 $Ca(OH)_2$ precipitate doesn't change. Zn(OH)_2 precipitate dissolves to form a colourless solution.

DOfSPMTEducation

Describe the test for carbonate ions

Describe the test for carbonate ions

Add dilute acid. Pass gaseous product through limewater (CO_2 turns limewater cloudy).

Describe the test for sulfate ions

Describe the test for sulfate ions

Add a few drops of dilute hydrochloric acid then a few drops of dilute barium chloride solution.

www.pmt.education

White precipitate forms.

Write the ionic equation for the test for sulfate ions (higher only)

Write the ionic equation for the test for sulfate ions (higher only)

$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$

Describe the test for halide ions


```
Describe the test for halide ions
Add nitric acid to react with carbonate ions
so no Ag<sub>2</sub>CO<sub>3</sub> forms (white solid). Add silver
nitrate. Precipitate forms:
White - AgCl
Cream - AgBr
Yellow - Agl
```

D PMTEducation

www.pmt.education

How can you detect whether a substance is a strong acid or a strong alkali?

How can you detect whether a substance is a strong acid or a strong alkali?

Add universal indicator

Red - strong acid

Yellow - weak acid

Blue/purple - strong alkali

Light blue - weak alkali

Green - neutral

What apparatus are use to record mass, time and temperature?

What apparatus are use to record mass, time and temperature?

- Mass balance
- Time stopwatch
- **Temperature thermometer**

Give 2 ways of measuring a volume of liquid and 1 way of measuring a volume of gas

Give 2 ways of measuring a volume of liquid and 1 way of measuring a volume of gas

Liquid - pipette or measuring cylinder

Gas - gas syringe or upside-down measuring cylinder

